Parnham, M. J. & Graf, E. (1987). Biochem. Pharmacol. 36, 3095-3102.

Rizzoli, C., Sangermano, V., Calestani, G. & Andreetti, G. D. (1987). J. Appl. Cryst. 20, 436-439.

Roberts, P. & Sheldrick, G. M. (1975). XANADU. Program for Crystallographical Calculations. Univ. of Cambridge, England.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Stadtman, T. (1990). Annu. Rev. Biochem. 59, 111-127.

Wendel, A., Fausel, M., Safayhi, H., Tiegs, G. & Otter, R. (1984). Biochem. Pharmacol. 33, 3241-3245.

Acta Cryst. (1995). C51, 301-304

5-Fluoro-1-indanone and 2,2-Dimethyl-5fluoro-1-indanone

J. GABRIEL GARCIA,* JOEL. D. ENAS AND HENRY F. VANBROCKLIN

Lawrence Berkeley Laboratory, UC-Berkeley, Berkeley, CA 94720, USA

FRANK R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 9 December 1993; accepted 17 May 1994)

Abstract

There are two independent molecules in the asymmetric unit of 5-fluoro-1-indanone (1), C₉H₇FO. The cyclopentene ring is planar in one of the molecules and slightly distorted into an envelope conformation in the other, with the CH₂ group adjacent to the carbonyl group lying 0.033 (2) Å out of the best plane of the other four atoms. The maximum deviation from coplanarity of all the non-H atoms of (1) is 0.038 (2) Å for one molecule and 0.019 (2) Å for the other. The two molecules are nearly parallel in the crystal, their best planes forming a dihedral angle of 2.2-Dimethyl-5-fluoro-1-indanone (2),4.1 (3)°. $C_{11}H_{11}FO$, lies on a mirror plane in the crystal. Molecules of both (1) and (2) pack in hypercentric arrays. The C-F distances are 1.354(2) and 1.360 (3) Å for (1) and 1.355 (2) Å for (2). The C=O distances are 1.218 (2) and 1.212 (3) Å for (1) and 1.220 (2) Å for (2).

Comment

The synthesis of 5-fluoro-1-indanone (1) and 2,2dimethyl-5-fluoro-1-indanone (2) was required for their use as standards for 5-[¹⁸F]fluoro-1-indanone

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved and 2,2-dimethyl-5-[¹⁸F]fluoro-1-indanone. This work is part of an ongoing study involving nucleophilic substitution reactions with the [¹⁸F]fluoride ion on nitro-1-indanones and nitro-1,3-indandiones (Enas, Garcia, Mathis & Gerdes, 1993; VanBrocklin, Enas, Garcia & Hanrahan, 1993). Compound (1) was prepared according to the literature method of Quere & Maréchal (1971) and compound (2) was prepared by reacting 2,2-dimethyl-5-nitro-1-indanone with KF in dimethyl sulfoxide (Enas, Garcia, Mathis & Gerdes, 1993). Suitable crystals of (1) and (2) had m.p.'s of 303–304 and 336–337 K, respectively.

Structural data for compounds (1) and (2) are in agreement with those of indan-2,2-dicarboxylic acid (Garcia, Enas & Fronczek, 1994), 2-ethyl-2nitroindan-1,3-dione (Garcia, Enas, Chang & Fronczek, 1993), 8-acetyl-2,2-difluoro-4-methyl-6*H*-1,3,2-indenodioxaborinane and 8-bromo-2,2-difluoro-4-methyl-6*H*-1,3,2-indenodioxaborinane (Garcia, Enas, VanBrocklin & Fronczek, 1993), 2acylindan-1-one (Garcia, Enas & Fronczek, 1993) and 2,2-dimethyl-4,5-dinitroindan (Garcia, Enas & Fronczek, 1995).

The packing of molecules in the structure of (1) (Fig. 3) is hypercentric. The two independent molcules are related by a pseudocenter near $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$ (0.263, 0.244, 0.257). The F and O atoms, however, do not conform to the pseudo-inversion and the molecules deviate slightly from being parallel, forming a dihedral angle of 4.1 (3)° with one another. The

Fig. 1. ORTEP drawing (Johnson, 1965) of the asymmetric unit of (1) representing heavy atoms as 30% probability ellipsoids and H atoms as circles of arbitrary radii.

Acta Crystallographica Section C ISSN 0108-2701 ©1995

Nardelli, M. (1983). Comput. Chem. 7, 95-98.

packing of (2) (Fig. 4) is also hypercentric, with *n*-glide related molecules related by a psudocenter at $\frac{1}{4}$, $\frac{1}{4}$, 0.245. This hypersymmetry caused some difficulty in the structure solution with multisolution direct methods typically yielding correctly oriented indan fragments misplaced with respect to the symmetry elements. The problem was circumvented using a misplaced fragment from *RANTAN* (Yao, 1981) for phase refinement in space group *P*1 using *DIRDIF* (Beurskens, 1984). This procedure yielded positions for the F and O atoms, which do not conform to the pseudosymmetry and thus led to the correct placement of the molecule with respect to the symmetry elements of *Pnma*.

Fig. 2. Compound (2) represented as in Fig. 1.

Fig. 3. The unit cell of (1) illustrating the pseudocenter relating the two independent molecules.

Fig. 4. The unit cell of (2).

Experimental Compound (1)

Crystal data C₉H₇FO $M_r = 150.2$ Triclinic $P\overline{1}$ a = 6.6219 (3) Å b = 9.4738 (13) Å c = 12.462 (2) Å $\alpha = 96.475$ (11)° $\beta = 93.022$ (7)° $\gamma = 107.315$ (8)° V = 738.5 (3) Å³ Z = 4 $D_x = 1.350$ Mg m⁻³

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: empirical $T_{min} = 0.941, T_{max} =$ 0.998 2924 measured reflections 2924 independent reflections

Refinement

F1*A* 01A C1A C2A C3A C4A C5A C6A C7A C8A C9A F1*B* 01*B* C1*B* C2B C3B C4B

C5B

Refinement on F R = 0.056 wR = 0.076 S = 4.462 2381 reflections 256 parameters All H-atom parameters refined w = $4F_o^2/[\sigma^2(F_o^2) + (0.02F_o^2)^2]$ $(\Delta/\sigma)_{max} < 0.01$

- Cu $K\alpha$ radiation $\lambda = 1.54184$ Å Cell parameters from 25 reflections $\theta = 20-30^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 297 KFragment $0.50 \times 0.42 \times 0.30 \text{ mm}$ Colorless Crystal source: recrystallized from dichloromethane
- 2381 observed reflections $[l > 3\sigma(l)]$ $\theta_{max} = 75^{\circ}$ $h = 0 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$ 3 standard reflections frequency: 167 min intensity decay: <3%
- $\begin{aligned} &\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction:} \\ &(1 + gI_c)^{-1} \text{ applied to } F_c \\ &\text{Extinction coefficient:} \\ &g = 1.42 \text{ (4) } \times 10^{-5} \\ &\text{Atomic scattering factors} \\ &\text{from International Tables} \\ &for X-ray Crystallography \\ &(1974, \text{ Vol. IV}) \end{aligned}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

$$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$$

х	у	Z	B_{eq}
0.5986 (3)	0.6008 (2)	0.2135(1)	10.60 (4
0.0289 (2)	0.2361 (2)	0.5490(1)	7.53 (4
0.4901 (4)	0.5133 (2)	0.2833 (1)	6.57 (5
0.5682 (3)	0.4044 (2)	0.3143 (2)	6.24 (5
0.4555 (3)	0.3171 (2)	0.3871 (1)	4.75 (4
0.2743 (3)	0.3430 (2)	0.4232(1)	4.36 (3
0.1992 (3)	0.4532 (2)	0.3881(1)	5.25 (4
0.3084 (4)	0.5389 (2)	0.3168 (2)	6.31 (5
0.5019 (3)	0.1919 (2)	0.4387 (2)	6.14 (5
0.3233 (3)	0.1406 (2)	0.5100 (2)	6.54 (5
0.1851 (3)	0.2403 (2)	0.5005 (2)	5.32 (4
0.3483 (2)	-0.1414 (1)	0.2153 (1)	9.93 (4
-0.1661 (2)	0.3083 (2)	0.1080 (2)	8.75 (4)
0.2526 (3)	-0.0416 (2)	0.1851 (2)	6.30 (5
0.3528 (3)	0.0556 (2)	0.1178 (2)	5.63 (4
0.2533 (3)	0.1572 (2)	0.0898 (1)	4.51 (3
0.0636 (3)	0.1580 (2)	0.1295 (1)	4.71 (4
-0.0333 (3)	0.0582 (2)	0.1982 (2)	6.28 (5

GARCIA, ENAS, VANBROCKLIN AND FRONCZEK

C6B C7B	0.0632 (4) 0.3281 (3)	-0.0445 (0.2772 (2) 2)	0.2262 (2) 0.0184 (1)	6.78 (5) 5.52 (4)
C8 <i>B</i> C9 <i>B</i> -	0.1575 (3) -0.0058 (3)	0.3546 (0.2774 (2) 3)	0.0181 (2) 0.0884 (2)	6.03 (4) 5.55 (4)
Tal	ble 2. Geo	metric pa	ramete	ers (Å, °) for	(1)
F1A—C1A		1.354 (2)	F1 <i>B</i> —-C	C1 B	1.360 (3)
01A—C9A		1.218 (2)	01 <i>B</i>	C9B	1.212 (3)
C1A—C2A		1.367 (3)	C1 <i>B</i> —(C2B	1.364 (3)
C1AC6A		1.373 (3)	C1 <i>B</i> —(C6 B	1.374 (3)
C2A—C3A		1.392 (3)	C2B(C3B	1.383 (3)
C3A—C4A		1.382 (3)	C3B(C4B	1.376 (2)
C3A-C7A		1.511 (3)	C38-	~7 <i>B</i>	1 506 (2)
C4A-C5A		1 384 (3)	C48_0	~5 <i>B</i>	1 385 (3)
C4A - C9A		1.467 (2)		70 <i>R</i>	1.303(3) 1.473(3)
C4A - C5A		1 384 (3)		75R	1 385 (3)
C44 - C94		1.567(3)	C_{4B}	TOR	1.385(3) 1.473(3)
C54 - C64		1 261 (2)	C5P (740	1,279 (3)
C74 C84		1.501(3)	C70 (200	1.578(3)
		1.515(5)		20D	1.519(3)
C0A-C9A		1.508 (5)		_9B	1.498 (3)
FIA-CIA-	-C2A	117.5 (2)	F1 <i>B</i> —C	C1B—C2B	117.8 (2)
FIA-CIA-	-C6A	117.8 (2)	F1 <i>B</i> —(C1B—C6B	117.5 (2)
C2A-C1A-	-C6A	124.6(2)	C2B	C1B—C6B	124.7 (2)
C1A-C2A-	-C3A	116.5 (2)	C1 <i>B</i> —(C2B—C3B	116.5 (2)
C2A-C3A-	-C4A	119.6 (2)	C2B	C3B—C4B	120.5 (2)
C2A-C3A-	-C7A	129.6(2)	C2B	C3B-C7B	127.9 (2)
C4A-C3A-	-C7A	110.8 (1)	C4B(C3B—C7B	111.6(2)
C3A-C4A-	-C5A	121.9 (2)	C3B	C4B—C5B	121.5(2)
C3A-C4A-	-C9A	110.1 (2)	C3B	C4B—C9B	109.4 (1)
C5A-C4A-	-C9A	128.1 (2)	C5B-(C4B-C9B	129.1 (2)
C4A-C5A-	-C6A	118.9 (2)	C48-0	75B-C6B	1187(2)
C1A - C6A -	-C5A	118.5(2)			118.1(2)
C_{3A} C_{7A}	-C84	105.0(2)	C3R_	77.BC8.B	104.5(1)
C74-C84-	QA	105.0(2)		R = COB	104.5(1)
014 - 004	-C/A	100.0(2) 1267(2)		-00-C10	100.0(2)
014 - 034 - 014	-C4A -C9A	120.7(2)			120.2(2)
C1A C0A	~~~~~	123.6(2)		.9D-COD	123.9 (2)
C4A-C9A-	-COA	107.5(2)	C4 <i>B</i> (.98-088	107.9(2)
F1A-C1A-	-C2AC3A	179.2 (2)	C5A(C4A-C9A-O1A	-1.2 (3)
F1B-C1B-	-C6BC5B	178.6 (2)	C5B—C	C4B—C9B—O1B	-0.7(3)
C7A-C3A-	-C4AC9A	0.1 (2)	C3AC	C4A-C9A-C8A	-1.4(2)
C7B-C3B-	-C4 <i>B</i> C9 <i>B</i>	0.2 (2)	C3B—C	C4B—C9B—C8B	-0.1(2)
		</td <td></td> <td></td> <td></td>			
Compoun	d (2)				
Crystal da	ta				
$C_{11}H_{11}FO$			Cu Ko	radiation	
$M = 178^{\circ}$	7		$\lambda = 1$	5418A Å	
$M_{f} = 170.2$	<u>_</u>		n = 1	J-104 A	25
Orthornon	IDIC		Cen pa	arameters from	1 25
Pnma			refle	ections	
a = 13.992	2(1)Å		$\theta = 25$	-42°	
b = 6.962	സ്മ		$\mu = 0$	73 mm^{-1}	
0.702			$\mu = 0.$		
c = 9.788	(I) A		I = 29	76 K	
V = 953.5	(2) Å ³		Fragm	ent	
Z = 4			$0.60 \times$	0.45×0.35	mm
D = 1.241	$M_{\alpha} m^{-3}$		Colori		
$D_x = 1.241$	i ivig ili		COIOII	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			fron	l source: recry n hexane	stallized
Data colle	ction				
Enraf-Non	ius CAD-4	4	820 of	served reflecti	ons
diffracto	meter		[1 \	$\sigma(I)$	
	meter		<u> </u>		
ω –2 θ scan	S		$R_{\rm int} = 0$	0.032	
Absorption	correction	า:	$\theta_{\rm max} =$	75°	
empirics	al		h = 0	$\rightarrow 17$	
T = -0		_	<i>k</i>	12 . 12	
$I_{min} = 0$.934, 1 max	. =	$\kappa = -1$	$12 \rightarrow 12$	
0.993			l = -8	$\rightarrow 8$	

3 standard reflections

frequency: 167 min intensity decay: -8.8%

3070 measured reflections

1062 independent reflections

Refinement	
Refinement on F R = 0.044 wR = 0.055	$\Delta \rho_{\text{max}} = 0.15 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.15 \text{ e} \text{ Å}^{-3}$ Extinction correction:
S = 2.152 820 reflections 102 parameters	$(1 + gI_c)^{-1}$ applied to F_c Extinction coefficient: $g = 1.10 (3) \times 10^{-5}$
All H-atom parameters refined $w = 4F_o^2/[\sigma^2(F_o^2) + (0.02F_o^2)^2]$	Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.04$	

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$				
	x	у	z	B _{ea}
F	0.37429 (7)	1/4	0.6264 (1)	8.75 (4)
0	0.75078 (8)	1/4	0.2569(1)	7.05 (3)
C1	0.4591 (1)	1/4	0.5597 (2)	5.90 (4)
C2	0.5408 (1)	1/4	0.6367 (2)	5.62 (4)
C3	0.6270(1)	1/4	0.5672 (2)	4.52 (3)
C4	0.6269(1)	1/4	0.4258 (2)	4.34 (3)
C5	0.5430(1)	1/4	0.3512 (2)	5.28 (4)
C6	0.4569(1)	1/4	0.4199 (2)	5.96 (4)
C7	0.7268 (1)	1/4	0.6239 (2)	5.99 (4)
C8	0.7930(1)	1/4	0.4989 (2)	5.14 (4)
C9	0.7255(1)	1/4	0.3762(1)	4.76 (3)
C10	0.8546(1)	0.4299 (3)	0.4919 (2)	8.08 (4)

Table 4. Geometric parameters (Å, °) for (2)

		-	
FC1	1.355 (2)	C3—C7	1.502 (2)
О—С9	1.220 (2)	C4—C5	1.382 (2)
C1—C2	1.368 (2)	C4—C9	1.463 (2)
C1-C6	1.369 (3)	C5—C6	1.380 (2)
C2-C3	1.385 (2)	C7—C8	1.534 (2)
C3—C4	1.383 (2)	C8—C9	1.528 (2)
C8—C10	1.523 (2)		
F-C1-C2	117.8 (2)	C3—C7—C8	105.5 (1)
FC1C6	117.5 (2)	С7—С8—С9	104.7 (1)
C2-C1-C6	124.7 (2)	C7—C8—C10	112.2 (1)
C1-C2-C3	117.2 (2)	C2-C3-C7	128.9 (2)
C2—C3—C4	119.4 (1)	C4-C3-C7	111.7 (1)
C9-C8-C10	108.3 (1)	C10-C8-C10 ⁱ	110.7 (1)
C3—C4—C5	122.0(1)	O-C9-C4	126.3 (1)
C3—C4—C9	109.3 (1)	0	125.0(1)
C5—C4—C9	128.7 (1)	C4—C5—C6	118.9 (2)
C1-C6-C5	117.8 (2)	C4—C9—C8	108.8 (1)
C3-C7-C8-C10	117.3 (1)	C10-C8-C9-C4	-119.9(1)
C10-C8-C9-0	60.1 (1)		. ,
Symmetry code: (i) $x, \frac{1}{2} - y, z$.			
		-	

Crystals of (1) and (2) were sealed in capillaries for data collection. Three octants of data were collected for compound (2). Programs used were MolEN (Fair, 1990), SHELXS86 (Sheldrick, 1990), RANTAN (Yao, 1981), DIRDIF (Beurskens, 1984), PLUTO (Motherwell & Clegg, 1978) and ORTEP (Johnson, 1965).

We thank DOE for support of this research through grant number DE-AC03-76SF00098.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry for (1) and (2), and least-squaresplanes data for (1) have been deposited with the IUCr (Reference: CR1124). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

304

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Etension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6425 ED Nijmegen, The Netherlands.
- Enas, J. D., Garcia, J. G., Mathis, C. A. & Gerdes, J. M. (1993). J. Fluor. Chem. 63, 233–241.
- Fair, C. K. (1990). MolEN. An Interactive Structure Solution Procedure. Enraf-Nonius, Delft, The Netherlands.
- Garcia, J. G., Enas, J. D., Chang, E. & Fronczek, F. R. (1993). Acta Cryst. C49, 1401-1402.
- Garcia, J. G., Enas, J. D. & Fronczek, F. R. (1993). Acta Cryst. C49, 1823-1824.
- Garcia, J. G., Enas, J. D. & Fronczek, F. R. (1994). Acta Cryst. C50, 1141-1143.
- Garcia, J. G., Enas, J. D. & Fronczek, F. R. (1995). Acta Cryst. In the press.
- Garcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. Submitted.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). *PLUTO. Program from Plotting Molecular and Crystal Structures.* Univ. of Cambridge, England.
- Quere, J.-P. & Maréchal, E. (1971). Bull. Soc. Chim. Fr. 8, 2983-2989.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- VanBrocklin, H. F., Enas, J. D., Garcia, J. G. & Hanrahan, S. M. (1993). Xth International Symposium on Radiopharmaceutical Chemistry, Kyoto, Japan.

Yao, J.-X. (1981). Acta Cryst. A37, 642-644.

Acta Cryst. (1995). C51, 304-306

cis,trans-3,3'-Sulfinylbis(acrylic acid)

THOMAS R. WEBB, ZWEI-CHANG HO AND PETER LIVANT

Department of Chemistry, Auburn University, Auburn, AL 36849-5312, USA

(Received 11 January 1994; accepted 19 May 1994)

Abstract

The title compound, (E,Z)-4-thia-2,5-heptadienedioic acid 4-oxide, $(C_6H_6O_5S)$, exhibits an atypical hydrogen-bonding network in which normal carboxylic acid dimers are not observed; one carbonyl O atom is omitted from the scheme. The C-S-C angle $[94.9 (1)^{\circ}]$ is unusually compressed and the S-O bond [1.504 (2) Å] is somewhat lengthened.

Comment

In the course of the synthesis and study of the divinyl sulfurane (1), proof of the structure of its hydrolysis product (2) was sought. Much to our surprise, slow evaporation of a methanol solution of (2) afforded crystals of (3) rather than (2) (Ho, 1993). The product of isomerization of both *cis* double bonds of (2), namely (4), was not detected, even after prolonged reaction time. Thus (3) is thermodynamically more stable than (2) or (4). The structure of (3) is reported herein.

The hydrogen-bonding network is interesting (Fig. 2). The sulfoxide diacid contains two hydrogen-bond donor sites (the OH's) but three hydrogen-bond acceptor sites (two carbonyl and one sulfinyl O atom). In this case, one hydrogen-bond acceptor, the carbonyl O atom of the cis acrylic acid moiety (O4), is simply excluded from the hydrogen-bonding scheme. The usual model of carboxylic acid dimerization is not in evidence nor is any intramolecular hydrogen bond. Instead, there is a centrosymmetric dimer formed by two hydrogen bonds (a in Fig. 2) between the trans acrylic acid carbonyl (O2) and the cis acrylic acid hydroxyl (O5). This dimer is in turn bound by hydrogen bonds (b in Fig. 2), involving the sulfinyl O atom (O1) and the trans acrylic acid hydroxyl (O3), to a dimer in the adjacent unit cell arrived at by a translation along c. The relevant intermolecular contacts are O2...O5(-x, 1-y, 1-yz) 2.683 (4) and O1…O3(x, y, 1 + z) 2.617 (4) Å. The length of the non-hydrogen-bonded carbonyl bond is 0.008 Å shorter than that of the hydrogen-bonded carbonyl. The presence of two non-equivalent carbonyls explains the IR spectrum of (3) (KBr) which shows a broad absorption of 1665 cm^{-1} , typical of α,β -unsaturated acids, and a sharp peak at 1709 cm⁻¹ which may be assigned to the nonhydrogen-bonded carbonyl. This novel solution of the problem of one too many hydrogen-bond acceptors is reminiscent of the unusual hydrogen bonding observed in glycolic acid HOOC-CH₂OH, which forms a closed loop of six molecules (Ellison, Johnson & Levy, 1971; Pijper, 1971).